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ABSTRACT: We consider noncommutative GUT inspired field theories formulated within
the enveloping-algebra formalism for anomaly safe compact simple gauge groups. Our
theories have only gauge fields and fermions, and we compute the UV divergent part of the
one-loop background-field effective action involving two fermionic fields at first order in the
noncommutativity parameter . We show that, if the second-degree Casimir has the same
value for all the irreducible group representations furnished by the fermionic multiplets of
the model, then, that UV divergent part can be renormalised by carrying out multiplicative
renormalisations of the coupling constant, # and the fields, along with the inclusion of
f-dependent counterterms which vanish upon imposing the equations of motion. These
f-dependent counterterms have no physical effect since they vanish on-shell. This result
along with the vanishing of the UV divergent part of the fermionic four-point functions
leads to the unexpected conclusion that the one-loop matter sector of the background-field
effective action of these theories is one-loop multiplicatively renormalisable on-shell. We
also show that the background-field effective action of the gauge sector of the theories
considered here receives no #-dependent UV divergent contributions at one-loop. We thus
conclude that these theories are on-shell one-loop multiplicatively renormalisable at first
order in 6.
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1 Introduction

Noncommutative gauge theories with simple groups can only be formulated with the so
called enveloping algebra approach, which makes use of Seiberg-Witten maps to relate
noncommutative gauge orbits to ordinary ones [1]. Since the Seiberg-Witten maps are
generically obtained perturbatively in the noncommutativity parameters @, the resulting
theories, which are invariant under ordinary gauge transformations, involve interaction
terms at all orders in 6. This, and the fact that 6 has negative mass dimensions, seems to
suggest that the theories are only meaningful as effective theories. However, some intriguing
results seem to point towards a perturbative self-consistency of the theories: it could well be
that for some models the structure imposed by the Seiberg-Witten maps survives quantum
corrections, so that the divergences can be absorbed by both multiplicative renormalisations
and by physically irrelevant counterterms (e.g., couterterms which vanish on-shell). The
first one of these results concerns the fact that the gauge anomaly cancellation conditions
have been shown to be, to all orders in 6, equal to their commutative counterparts [2];
this allowed to formulate noncommutative extensions of the Standard Model [3], and GUT
theories [4]. Other results concern the renormalisability of the gauge sector at one-loop,
observed for a variety of models independently of the matter content [5-12]; in fact, the
matter determinants contributing to the one-loop gauge effective action are known to yield
renormalisable contributions to all orders in 6 , at least for non-chiral theories [13].



Despite these auspicious results, the matter sector —in the fundamental representation—
of the theories studied so far ~having U(1) and SU(2) as gauge groups— is nonrenormalis-
able [5, 7, 11] and the lack of renormalisability can be traced back to problematic diver-
gences in four point functions of the matter fields . There are, however, promising excep-
tions: on the one hand, supersymmetric (S)U(N) theories with adjoint Majorana fermions
in a vector multiplet have been shown to be one-loop renormalisable [13], and, on the other,
noncommutative GUT inspired theories with arbitrary groups and representations have
been shown to be free of the unwelcomed four fermion divergences just mentioned [14, 15].

In this paper we continue the study of the renormalisability of noncommutative GUT
inspired theories with no scalar fields, by computing the UV divergent part of the effec-
tive action involving two fermion fields. Here, we do it for theories with anomaly safe
compact simple gauge groups —groups for which the anomaly coefficient vanishes in all
representations— since among these groups one finds the phenomenologically promising
SO(10) and Eg. These models have, as a consequence of the anomaly cancellation condi-
tion, no vertices of first order in € in the bosonic part of the classical action, and hence are
not sensitive to ambiguities in the trace over bosonic fields [4]. We use the background field
method in the Feynman-background-field gauge in conjunction with dimensional regularisa-
tion to reconstruct, at first order in 6, the full one-loop UV divergent contribution involving
two fermion fields. We do so by using gauge invariance and working out the pole part of
the two- and three-point Green functions involving, respectively, two fermion fields and one
gauge field and two fermion fields. The result is the following: whenever all the irreducible
representations carried by the fermion multiplets of the theory share the same second-degree
Casimir, the UV divergences can be renormalised by using multiplicative renormalisation
of the coupling constant, the noncommutative matrix parameter ¥ and the fields, and by
adding #-dependent counterterms which vanish on-shell, i.e., upon imposing the equation of
motion. These #-dependent counterterms which vanish on-shell have, of course, no physical
effect. If one combines this result with the absence of UV divergent contributions to the
fermionic four-point function of these theories —see ref. [15]—, one concludes that the one-
loop matter sector of the theory is renormalisable on-shell at first order in 6; this is the first
time that such property is shown to hold in a noncommutative theory with nonmajorana
fermions. The requirement of a common second-degree Casimir for the matter representa-
tions can be fulfilled by using a single irreducible representation —as is commonly done in
ordinary GUTs such as SO(10) and Eg—, though our renormalisability result is valid for any
choice of representation— or combining a representation with its conjugate. Finally, once
the matter sector has been seen to be renormalisable, we show by using formal arguments
that there are no UV divergent contributions to the gauge sector which are of first order in
0. We thus put forward, for the first time in the literature, a huge family of noncommutative
theories with chiral fermionic matter and GUT gauge groups which are one-loop renormal-
isable at first order in 6, in the physical sense that only the ordinary renormalisation of the
coupling constant and a new multiplicative renormalisation of the noncommutative matrix
parameter 8" are needed to workout UV finite S-matrix elements: the counterterms —in
particular, the a priori problematic -dependent counterterms— which are not given by the
renormalisations of 6 and the coupling constant vanish on-shell. Recall that the free pa-



rameters of our classical noncommutative field theories are the coupling constant and 6#~.

Now, to make sure that the Hamiltonian formulation of our theories is the elementary
one —only one canonical momenta per generalised coordinate—, we shall choose a noncommu-
tative matrix parameter 0¥ such that % = 0, i = 1,2, 3. Hence, without lose of generality
one can say that 0" is characterized by a single noncommutative parameter, say, 6.

The paper is organised as follows. The theory is defined in section 2, where the com-
putation by means of the background field method is also outlined. Section 3 includes the
results of the computations of the UV divergent part of the effective action involving two
fermion fields, whose renormalisability is discussed in section 4. Section 5 is dedicated to
argue in favour of the renormalisability of the gauge sector. Conclusions are presented
in section 6. We also include two appendices: appendix A provides the results for the
divergent contributions to the Feynman diagrams involved in the computations of section
3, while appendix B gives the results for the beta functions of the physical parameters of
the theory, g and 6.

2 The theory and their background field method quantisation

We shall consider a general four-dimensional noncommutative GUT inspired theory with
an arbitrary anomaly safe [2] compact simple gauge group and no scalar fields as formulated
in ref. [4]. We thus define the theory by means of a noncommutative left-handed chiral
multiplet ¥ in an arbitrary representation py of the gauge group, and an enveloping-algebra
valued gauge field A, with action

1 =
S = /d4x — 2—92TrFW*F‘“’ + UiV, (2.1)
FMV = 3MAV — 8VAM — i[AM,AV]*, D;ﬂﬁL = 8M\IIL — qu/(Au) * \I/L,

where, at first order in 6, the noncommutative fields are defined in terms of the ordinary
ones ay, v by the following standard Seiberg-Witten maps,

1
A, =a,+ Zeaﬁ{aaau + faprag} + O(6?),
1 i
Uy, =y, — 590‘5%(%)56% + 190‘6%(%)%(@6)% +0(6%). (2.2)

Note that p, denotes an arbitrary unitary representation, which can be expressed as a
direct sum of irreducible representations, py, = @le p{b. Accordingly, the fermion fields
can be expressed as a direct sum of irreducible multiplets, ¥ = @le U = @f:l Y.

Upon substituting eq. (2.2) in eq. (2.1) and, then, expanding up to first order in 6,
one obtains a classical action for the ordinary fields aj, and ¢. Within the enveloping-
algebra formalism, the quantisation of the theory defined by this classical action defines
the corresponding noncommutative field theory at first order in 6. It has been shown in
ref. [4] that for compact simple gauge groups the anomaly cancellation condition [2] makes
the first order in # contribution coming from the noncommutative Yang-Mills action in
eq. (2.1) vanish. So for the family of theories studied in this paper, and at first order in 6,



the only classical noncommutative corrections to the ordinary classical action come from
the fermionic action in eq. (2.1).

Since we shall formulate the Feynman rules of our theory in terms of ordinary Dirac
fermions, we include in it a spectator right-handed fermion, as done in ref. [15]

S—>S’:S+/d4mﬁRia1ZR, P = [zf]

Again as in ref. [15], we shall regularise the theory by means of dimensional regulari-
sation in D = 4 + 2¢ dimensions, using the BMHV scheme for defining 5 [16, 17]. In this
scheme there is an infinity of dimensionally regularised actions which reduce to (2.1) in the
limit D = 4, and which differ from one another by evanescent operators [18]. Following [18]
we will keep all the vector indices in interaction vertices “four-dimensional”, i.e., contracted
with the “barred” metric g, ; we shall also define the dimensionally regularised 0#" as being
“four-dimensional”. Furthermore, in our computations we shall discard any contribution
which has a pole in € but whose numerator is an evanescent operator. Since we shall be deal-
ing with an anomaly free theory, these contributions involving evanescent operators have
no physical effects at the one-loop level [18, 19]-although they are needed at two loops and
beyond [20] — and are mere artifacts of the regularisation procedure. It is not difficult to
convince onself that the famous one-loop log (—Q?/u?) contributions to Green functions are
uniquely fixed by the pole contributions to the effective action with no evanescent operators.

Our aim is to compute the one-loop UV divergent part of the effective action involving
two fermion fields and no evanescent operator in a manifestly covariant approach, which
allows to reconstruct the full contribution to the effective action from a minimum number
of diagrams, as was done in ref. [12]. For this we use the background field method [21]. This
method amounts to split the gauge field a, in a background part b, and a quantum part g,

a, = by + qu, (2.3)
and choose a gauge fixing which preserves background gauge transformations
dq, = —ilqu,c|, db, = Dbl,c, Db, = 0, — ilby, |-

This gauge fixing is

1
Sur =~ [0 (DB, P, Sy = [deDlb) Db+ g

(0%

Adapting to our case the discussions in refs. [21] and [12], introducing the classical fields
l;ﬂ, 1&, the 1PI functional is given by

[0l = [ e 3 g™ DI T e )

ila alka jl’ 7]ka

The previous effective action is gauge invariant under gauge transformations of the classical
fields bﬂ,ﬂ)ﬂz. The dimensionally regularised version of the effective action above is not
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Figure 1. Feynman rules of the noncommutative interactions relevant to our calculations, involving
the Dirac fermion .

strictly speaking gauge invariant, i.e, it is gauge invariant modulo an evanescent operator
which as we have argued above can be dropped for anomaly- free theories in UV divergent

one-loop computations.

Let us notice that T(™*) is equivalent to a background 1PI diagram with n background
gauge field legs, k fermionic legs and k anti-fermionic legs. (Note that our definitions do
not involve any symmetrisation over the background gauge fields). The vertices relevant
to our calculations and their associated Feynman rules for &« = 1 are given in figure 1. In
the Feynman rules, the background field legs are denoted with an encircled “b”; the rules
are defined without symmetrising over background field legs, in accordance with eq. (2.4).



3 Computation of the UV divergent part of the effective action involving
two fermion fields

In this section we shall compute the UV divergent contributions (not involving evanescent
operators) to the effective action involving two fermion fields, at one-loop and first order in
9, by calculating the background field 1PI diagrams I'™*) with no external quantum field
legs of eq. (2.4), using the Feynman rules in figure 1.

To ease the computation we consider the following simplifications, which do not mean
a loss of generality of the results:

e Choice of gauge o« = 1. This choice greatly simplifies the gauge propagator and since
the on-shell effective action is independent of the gauge-fixing term —see [22] and
references therein—, the conclusions we shall draw from our explicit computations
upon taking them on-shell will also be gauge independent.

e Computing a minimum number of diagrams. Since the use of the background field
method ensures gauge invariance (modulo one-loop irrelevant evanescent operators)
of the result for an anomaly free theory, the full gauge invariant contribution to the
UV divergent part with no evanescent operator of the effective action —which is local
in the fields— can be reconstructed from a reduced number of 1PI diagrams T'(F).
These UV divergent contributions to the effective action can be expanded in a basis
of independent gauge invariant terms. If their contributions with a given number
and types of fields are also independent, then the coefficients in the expansion can
be fixed by computing the 1PI diagrams with the same number and types of fields.

In order to identify the diagrams that must be computed, we should start by choosing
a basis in 4 dimensions of gauge invariant terms whose integrals are independent. Since
it was shown in ref. [15] that noncommutative GUT inspired theories such as the ones
under consideration have no four fermion divergences, a little power-counting takes us to
the conclusion that we only need to consider terms with two fermion fields. We choose the
following ones, for each flavour r:

quaaﬁlzrr)/uPquﬁDa¢r, ngaaﬁi)r'YMPLfaﬁDu¢r, ngaaﬁﬁr’)ﬂPL’Dufaﬁ(br,
Szzeaﬁl/;r'YaPLfﬁuDﬂwra Sg :Haﬁzzr'YaPL,D“fﬁ,uwm SE :Haﬁl/;r'YaﬁﬂPLlDyfuuwm
5 =0y Yo" PL L D e, s5 =070 7 PLDg fpotbr,  55=0""176"" PLfpo Dgiby,

57110 :aaﬁlzr’)/apUPLfﬁaDpwr, 851 :aaﬁi)r'YaDﬁD2¢r, 57112 :aaﬁﬁr’)/aﬁﬂD,uDQ(br-
(3.1)

In the formulae above, f,, and D, f,, are shorthands for p,(fu ) and p,(Dq fu). We will
omit explicit indications of the representations p, in future formulae; it will be assumed that
a Lie-algebra valued field or generator acting on a fermion v, does so in the representation
pr. Note that there are other admissible gauge invariant terms, involving symmetric in-
variant tensors t*% of the gauge group, such as §e),y#t4 - %TH Trak*l(faﬁ)“k D,y
however, these terms, as will be justified in the next paragraph from the Feynman rules
and the inspection of Feynman diagrams, do not appear in the UV divergent part of the
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Figure 2. Diagrams contributing to I'®1) at order h.

effective action at first order in 6, and may be ignored (also, recall that we are dealing with
anomaly safe theories with t%%¢ = d%%¢ = ().

First, let us show that the gauge invariant contributions to the non-evanescent, diver-

,0
div , can be

gent part of the effective action involving two fermion fields at first order in 6, I"-
fixed by only considering Green functions with two fermionic legs and with two fermionic
legs and a bosonic leg, respectively. Schematically, the gauge invariant terms that may
contribute are of the form 6y D31 —~whose contributions will appear in Green functions
with two fermion fields and between zero and three gauge fields— and (D f), 03 f D1,
which will involve contributions to Green functions with two fermion fields and between
one and three gauge fields. Given a basis of local gauge invariant terms such that their
contributions with a minimum number of fields are independent of each other, then the
coeflicients of the expansion of I‘%Z’g in such basis can be fixed by computing the diver-
gences of the Green functions with the least possible number of fields. This means that for
our purposes it suffices to compute the pole part of the Green functions with two fermion
fields and two fermion fields and one gauge field, respectively. The diagrams are shown in
figures 2 and 3. Using the Feynman rules of figure 1, it is easily seen that the diagrams
of figure 2 have a colour structure of the form T4T® = Co(r)I —Cy(r) being the second
Casimir invariant of the representation r. Their contribution to F%i;’e

(see eq. (2.4)) and given their colour structure it is clear that they fix the coefﬁcnents of
div,0 .

Py A
of figure 3 have colour structures of the form fWTITS = LCo(G)T*, TATPT? = Co(r) T2

where C3(G) is the second Casimir in the adjoint representation. These colour structures

the terms s11, 12 in the expansion of I' in the basis of eq. (3.1). Next, the diagrams

involve only the generators 7%, and therefore it will be possible to express the contribution
”1(; jlvmwjb“ to Fdlsp”e in terms of the three-field contributions of the terms s;-s12 of
q. (3.1); there is no need to consider more complicated colour structures in the basis of
gauge invariant terms. Once the terms coming from s;1, 12 —which, as explained before,
are identified from the diagrams of figure 2— are subtracted, one can fix the coefficients of

div,0 . .
B in the basis of eq. (3.1).

The results for the UV divergent contributions of the diagrams of figures 2 and 3 are

the terms si-s1¢ in the expansion of I'-

shown in appendix A. The final result for the gauge invariant O(f) contributions to the
divergent part of the one-loop effective action is the following,

2 < 2
div,0 g o 7 tg
Ty 1w ¥] = / de{ o530 D Cor) Unagp PLD Dy + o= > Co(G
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Figure 3. Diagrams contributing to IT'*1) at order h.
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+ Eaaﬁwr'YaﬁﬂPquuDy¢r:| }, (3-2)

where all covariant derivatives and field strengths are evaluated on the background field b,,,
and we have suppressed the hats on the classical fields as well as explicit indications of the
representations p, of the field strength and its covariant derivatives to ease the notation.
In the formulae above, Co(r) represents the second Casimir of the representation r, Ca2(G)
corresponding to the adjoint representation. It is defined as T*T* = Ca(r)L,. In terms of



the basis s; of eq. (3.1)
2.
div,0 . 4 g 1 1 1 5 5 1 1
FW [bu Y] = /d z <167T26 ZCQ(G) [657{ - 555 - gsg + 682 + ESE — Esg — gsg

1 3 3 1 1 1 ]
16” ZCQ [sl—i— —s5 — 23r—13g+ésg+1237+24 Esb}) (3.3)

4 Analysing renormalisability of the matter sector

The objective of this section is to check whether the noncommutative divergences involving
two fermion fields of eq. (3.2) can be subtracted by means of multiplicative renormalisation
of the coupling constant, the noncommutative parameter 6 and fields plus counterterms
which vanish on-shell.

First, the the one-loop divergences at order zero in 0 are, as is well known, renor-
malisable by means of multiplicative renormalisations of fields and parameters. These
multiplicative renormalisations take the form

b“ = Z1/2bR T,Z) = lep/2T,Z)R, g = Mie ggR,, e,ul/ — de;u/a (41)

with Z; = 1 + 0Z;. The parameter p is the dimensional regularisation scale. Note that
in the background field method there is no need to renormalise the quantum field ¢ of
eq. (2.3). It is easily seen that gauge invariance forces 67, = 0, while the divergences in
the ordinary theory yield
g°Cs(r)
16m2¢ '
2
g 11 2
02, = —C5(G) — =
g 167726[6 2(C) 3202(70)}

T

571, = (4.2)

where co(r) is the index of the representation r; its relation with Ca(r) is given in eq. (B.2).
Let us introduce the following type of counterterms

08 08
ct __ D a
S = /d x(;az(x)FH a, Y] + <Z 6%(:6)Gr[a,¢] +c.c.>, (4.3)
which vanish on-shell due to the equations of motion
08 08

50,3(95) ()
In order to preserve gauge symmetry, F%[a, 1] and G,[a, ] have to transform in 4 dimen-
sions under gauge transformations as follows

sE, = —i[F,, A, sG, =iAG,.
We consider the following F), and G, [,

Fy =10 Dy fop + y20,.°D" fra +Zy§9 (VYo PLT )T

+1i Z Y50 (Yo PLT )T + y50,° D" f 3,



Gy, =K50°P fos PLipy + k20°C~ 0, Pr "0y + K30°P Y0, PLDs D b, + k50%P~, 5 PLD*ih,
+ KL0°Cs Pp fuptbr; yi €R, k; € C, (4.4)

which have the appropriate behaviour under gauge transformations. Note that we only
considered a left-handed part for G, since all the divergences in eq. (3.2) involve left-
handed projectors Py,.

The O(0) counterterm action involving two fermion fields obtained by considering the
multiplicative renormalisations of eq. (4.1) and the tree-level contributions of the countert-
erms S vanishing on-shell, has the following expansion in the basis of terms s;:

Sf;j = ih / deZc;" ;", (4.5)

1 k T T 1 T T Z ‘s
Cl = 5(5Z9 +6Zy) — (k?g) —ky, Oy = —1(529 +6Zy) + (K1) + k] + 5 (k?g) §k37

Cy = —iy1 + kj — —k‘2 + 5 (k‘g) , o Ol =—(k3)" — ky —i(k5)" —iky — 4i(ky)",
T . Z T . T\ * T T 1 T 1 N T\ % -1.7
Cs = iys — 2—922/3 - 21(k4) — kg, Cg = —@?M - 52/5 - W%) — kg,
. * . 7\ * 7T T 1 r ' 7\ % ) T 1.7
C7 = —2i(ky)" —i(ky)" — iks, Cg = —§k2 + %(ks) + %ks — ik,

T Z T\ % Z T -7, 7 - T\ * T T * T - T\ * -1.7
Cy = §(k3) + §k3 —iky —i(ky)", Ciy= (k3)" — k3 +i(k3)" + iks,
Ciy = —(k5)" — kg — 2(ky)" — 2k}, Cly = —(ki)" + ki

The y;, k; of eq. (4.4) also generate, to O(#) and at tree-level, terms involving four fermion
fields,

¢ 0 spa spo o 1 aBuv
waqp /d4 Z 9 6+2y49 ﬁ)(i/)r%T PLwr)(lbs’)ﬁT PLT;Z)s) 9 = 56 B 9 (4'6)

As seen in ref. [15], four-fermion divergences are absent in noncommutative GUT compati-
ble theories at one loop, O(#). Renormalisability of the divergences involving two and four
fermions amounts to demand

ct,0 gt,@ _ div,0
S@WW =0 S@W FWD ’

where Sl%sz v ng and Fillz ¥ are given, respectively, by egs. (4.6), (4.5) and (3.3) The first
equation is solved by choosing y%, vy} to be flavour independent (y; = y; V). Solving the
second identity in the basis of independent terms s} and projecting the resulting equations

into their real and imaginary parts, one gets

1 2
$i: (020 +062,) — 2Rek; = 152 < 5(G) + ()),
§2C(G
sh: (5ZG+5Z¢)+2ReM+Imk3_ 482(2 ),

9°(C2(G) = Cs(r))
12872¢ ’

1
sy YL — §Rek§ — Imk] + §Imk:§:0, §Imk§ + Rek] — ERekzgz

,10,



2
T T T ‘s T g 5 3
sy: Rek; +2Rek;=0, —2Rek; —4Imk)= _—167726<602(G) - 502(7“)),

1 A 3
SE @yg —y2 + 2Rek) + Imk5 =0, —Rek; — QIme:—g—< Cy2(G) — ZCg(?")),

16m2e\12 °
& Rel +ReM=0, ———y' Ly Tk + k=2 [~ Lc (@) + 2Cs(r)
6 4 570 Tope¥aT gl 4 57 16m2\ 16 2 6 2\")
2
g°Ca(r)
T r T —91 r_
87 Rek4 + Rek5 O, mk4 71927(26 s
sg: — Reks + Rekg + lIka:O Imkf — lRekr:—i - lC’ (G)+ iC’ (r)
8" 3 5T 57 27T T pn2e\ 8 2 24 2V )
sg:  — Reks + 2Reky =0,
sio: Imkj — Reky =0,
s1; ¢ — Reks — 2Rek; =0,
2

g°Ca(r)
o —2Imkl=— )
o12 = T g0

The equations are compatible, and we find the following family of solutions

y1 = Imk{, yg = 292212,
2 g* 9
S 1 1 Ty = —Zy — 1 —4
Yy Ysg 3847‘('2( 602(7’) 3CQ(G)), 0 P 4871'26( 302(7“) CQ(G)),
1 9 9
r— _imki-—9 (1 — Imk = ——9 (11 -
Rek] 5 mks 3847'('26( 3Cy(r)—8C3(G)), Imki 3847'('26( Cy(r) — 8C2(@)),
2 2
9 Cs(r) 59
I ]CT — k'f‘ = — 2 —
mky = So o Reks, 19271'26( Cy(r) — Co(@)),
Imkj = Rek; = 2Rek; = —2Rek;). (4.7)

First, note that y1,y2,y5 and 6Zy must be flavour independent (see eq. (4.4)), and so must
be ys,y4 for the cancellation of the four fermion divergences to be preserved under the
renormalisation procedure, as was previously seen. Looking at the solutions in eq. (4.7)
and imposing flavour independence, it is clear that one must require that all flavours have
identical Co(r); this can be achieved by considering all fields in the same representation or
also in its conjugate.

Since the counterterms of egs. (4.3) and (4.4), which are dependent on the parameters
1;, and k;, vanish on-shell, we have that the corresponding divergences in the effective
action are physically irrelevant since they will cancel out when computing the S matrix.
Looking at the expansion in the counterterm action of eq. (4.5), it is clear that the only
divergences surviving on-shell are those associated with the multiplicative renormalisation
of the gauge coupling constant and noncommutativity parameter 6.

5 No O(0) UV divergent contributions in the gauge sector

The results of the previous section, together with those of ref. [15], show that the matter
sector of the one-loop, order 6 effective action is renormalisable. It remains to see if the
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gauge sector is also renormalisable. In all cases analysed in the literature so far, the gauge
sector of noncommutative gauge theories in the enveloping algebra approach turned out
to be one-loop renormalisable at order . We show in this section that, at one-loop, there
are no UV divergent contributions of first order in 6 to the part of the background-field
effective action, F[BM, ) =0, = 0] which only depends on the gauge field.

Possible UV divergences in the gauge sector can be of two types, depending on whether
they involve € tensors or not. Since any vector-like contribution to the effective action can
always be regularised in a gauge-invariant way in the framework of dimensional regularisa-
tion, the allowed O(0) vector-like UV divergences can only be a combination of the terms
Troo? fagfuw f* and Tro*? fapfauf*, which vanish for anomaly safe groups since they
involve vanishing symmetrised Tr7%{T® T¢}. It only remains to show that there are no
UV divergences involving e tensors. These divergences would come from fermionic loops,
since the € tensors arise from traces of v matrices. The one-loop fermionic contributions to
the gauge sector of the effective action can be computed in a clever way, to all orders in 6,
using the technique used in refs. [2] and [13]. By defining appropriately the dimensionally
regularised interactions —recall that there is an infinity of choices, differing by evanescent
contributions— a change of variables can be done in the fermionic path integral which
amounts to inverting the SW map and whose Jacobian is unity. The diagrams to compute
involve vertices with noncommutative fermions, in which the noncommutative phase fac-
tors are independent of the loop momenta. Then, as done in ref. [2], it can be easily seen
that these diagrams have vanishing UV divergent contributions involving € tensors.

We have seen that there are no UV divergences contributions in the gauge sector at
one-loop and first order in 6. Now, since at tree-level there are no O(f#) contributions
only involving gauge fields, there is no conflict with the multiplicative renormalisations of

eq. (4.2), and thus the gauge sector is one-loop renormalisable up to first order in 6.

6 Summary, conclusions and outlook

In this paper we have computed the UV divergent contributions, involving two fermions and
an arbitrary number of gauge fields, to the background field effective action of noncommuta-
tive, anomaly safe GUT inspired theories with no scalars. We have done the computation
at one-loop and first order in the noncommutativity parameter 8. We have shown that
those UV divergences can be renormalised by means of the ordinary multiplicative renor-
malisations of the coupling constant and fields, along with a multiplicative renormalisation
of the noncommutative parameter 6§ and with the introduction of #-dependent countert-
erms which vanish on-shell, provided the irreps furnished by the matter fermionic fields
share the same second-degree Casimir invariant. It is obvious that this condition on the
second-degree Casimir invariant is automatically fulfilled by the fermionic matter content
of the phenomenologically relevant ordinary SO(10) and Eg GUTs. We have also shown
that the gauge sector of these theories receives no linear one-loop UV divergent radiative
corrections which are of first order in 6.

Our results, together with those of ref. [15] proving the absence of 4 fermion UV
divergences in the one-loop effective action of noncommutative GUT inspired theories at
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first order in 6, show that the theories considered in this paper are renormalisable on-shell
at one-loop and first order in 6. We have thus seen that, at one-loop and first order in 6,
only the renormalisation of the coupling constant and the noncommutative parameter 6
—the two free physical parameters of the classical theory— are needed to obtain renormalised
S matrix elements. This is the first time in which a noncommutative gauge theory defined
by means of Seiberg-Witten map, with fermions in representations other than the adjoint,
has been shown to have this property. This result clearly favours the consideration of
GUT compatible noncommutative theories over their nonrenormalisable brethren. The only
other known examples of one-loop, O(#) renormalisable noncommutative gauge theories
involve SU(N) adjoint Majorana fermions in a supersymmetric setting [12].

A pressing open problem is the study, at one-loop and first order in 8, of the renor-
malisability of the noncommutative GUT theories obtained by adding a noncommutative
Higgs and Yukawa sectors —through the hybrid Seiberg-Witten map of ref. [4]- to the non-
commutative theories considered here. The computations involved in this study are far
more lengthy that the already long calculations carried out in this paper and will certainly
deserve to be the content of a different paper. We hope that the results presented here will
encourage people to further analyse the properties of noncommutative GUT theories.
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A Divergent contributions to the diagrams of figures 2 and 3

Here we give the pole part of the Feynman diagrams depicted in figures 2 and 3, computed
in dimensional regularisation with D = 4 4+ 2¢ dimensions.
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In the formulae above, I, denotes the identity operator in the linear space defined by the
representation r.

B Beta functions of the physical couplings g and 6

It is an elementary exercise to work out the one-loop beta functions, 8, and g, of g and
0, respectively, which are the only physical couplings of the theory. One gets the following
results

3
g 11 4
o=~ 162 (302(@ ~3 202(7“)>a
g0
6 )

Cy(r) represents the second-degree Casimir invariant of the representation r, while ca(r) is

Bo = (C2(G) = 4Cq(1)). (B.1)

the index of the representation. Both are related by the relation
(B.2)

N (r) being the dimension of the representation r, and G denoting the adjoint representa-
tion. The § function for the gauge coupling g is the same as in the commutative theory.
The ( function for @, due to the presence of matter, has generically the opposite sign as
that of the beta function for the noncommutative parameter that was computed for non-
commutative pure gauge theories in ref. [9]. [y in eq. (B.1) can be seen to be positive for
Eg and SO(10) representations with dimensions less than 100000 and 12000, respectively,
using the data in ref. [23].
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