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aDepartamento de F́ısica Teórica I, Facultad de Ciencias F́ısicas,

Universidad Complutense de Madrid,

28040 Madrid, Spain
bKavli Institute for Theoretical Physics, University of California,

Santa Barbara, CA, 93106-4030, U.S.A.

E-mail: carmelo@elbereth.fis.ucm.es, tamarit@kitp.ucsb.edu

Abstract: We consider noncommutative GUT inspired field theories formulated within

the enveloping-algebra formalism for anomaly safe compact simple gauge groups. Our

theories have only gauge fields and fermions, and we compute the UV divergent part of the

one-loop background-field effective action involving two fermionic fields at first order in the

noncommutativity parameter θ. We show that, if the second-degree Casimir has the same

value for all the irreducible group representations furnished by the fermionic multiplets of

the model, then, that UV divergent part can be renormalised by carrying out multiplicative

renormalisations of the coupling constant, θ and the fields, along with the inclusion of

θ-dependent counterterms which vanish upon imposing the equations of motion. These

θ-dependent counterterms have no physical effect since they vanish on-shell. This result

along with the vanishing of the UV divergent part of the fermionic four-point functions

leads to the unexpected conclusion that the one-loop matter sector of the background-field

effective action of these theories is one-loop multiplicatively renormalisable on-shell. We

also show that the background-field effective action of the gauge sector of the theories

considered here receives no θ-dependent UV divergent contributions at one-loop. We thus

conclude that these theories are on-shell one-loop multiplicatively renormalisable at first

order in θ.
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1 Introduction

Noncommutative gauge theories with simple groups can only be formulated with the so

called enveloping algebra approach, which makes use of Seiberg-Witten maps to relate

noncommutative gauge orbits to ordinary ones [1]. Since the Seiberg-Witten maps are

generically obtained perturbatively in the noncommutativity parameters θ, the resulting

theories, which are invariant under ordinary gauge transformations, involve interaction

terms at all orders in θ. This, and the fact that θ has negative mass dimensions, seems to

suggest that the theories are only meaningful as effective theories. However, some intriguing

results seem to point towards a perturbative self-consistency of the theories: it could well be

that for some models the structure imposed by the Seiberg-Witten maps survives quantum

corrections, so that the divergences can be absorbed by both multiplicative renormalisations

and by physically irrelevant counterterms (e.g., couterterms which vanish on-shell). The

first one of these results concerns the fact that the gauge anomaly cancellation conditions

have been shown to be, to all orders in θ, equal to their commutative counterparts [2];

this allowed to formulate noncommutative extensions of the Standard Model [3], and GUT

theories [4]. Other results concern the renormalisability of the gauge sector at one-loop,

observed for a variety of models independently of the matter content [5–12]; in fact, the

matter determinants contributing to the one-loop gauge effective action are known to yield

renormalisable contributions to all orders in θ , at least for non-chiral theories [13].

– 1 –
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Despite these auspicious results, the matter sector –in the fundamental representation–

of the theories studied so far –having U(1) and SU(2) as gauge groups– is nonrenormalis-

able [5, 7, 11] and the lack of renormalisability can be traced back to problematic diver-

gences in four point functions of the matter fields . There are, however, promising excep-

tions: on the one hand, supersymmetric (S)U(N) theories with adjoint Majorana fermions

in a vector multiplet have been shown to be one-loop renormalisable [13], and, on the other,

noncommutative GUT inspired theories with arbitrary groups and representations have

been shown to be free of the unwelcomed four fermion divergences just mentioned [14, 15].

In this paper we continue the study of the renormalisability of noncommutative GUT

inspired theories with no scalar fields, by computing the UV divergent part of the effec-

tive action involving two fermion fields. Here, we do it for theories with anomaly safe

compact simple gauge groups –groups for which the anomaly coefficient vanishes in all

representations– since among these groups one finds the phenomenologically promising

SO(10) and E6. These models have, as a consequence of the anomaly cancellation condi-

tion, no vertices of first order in θ in the bosonic part of the classical action, and hence are

not sensitive to ambiguities in the trace over bosonic fields [4]. We use the background field

method in the Feynman-background-field gauge in conjunction with dimensional regularisa-

tion to reconstruct, at first order in θ, the full one-loop UV divergent contribution involving

two fermion fields. We do so by using gauge invariance and working out the pole part of

the two- and three-point Green functions involving, respectively, two fermion fields and one

gauge field and two fermion fields. The result is the following: whenever all the irreducible

representations carried by the fermion multiplets of the theory share the same second-degree

Casimir, the UV divergences can be renormalised by using multiplicative renormalisation

of the coupling constant, the noncommutative matrix parameter θµν and the fields, and by

adding θ-dependent counterterms which vanish on-shell, i.e., upon imposing the equation of

motion. These θ-dependent counterterms which vanish on-shell have, of course, no physical

effect. If one combines this result with the absence of UV divergent contributions to the

fermionic four-point function of these theories –see ref. [15]–, one concludes that the one-

loop matter sector of the theory is renormalisable on-shell at first order in θ; this is the first

time that such property is shown to hold in a noncommutative theory with nonmajorana

fermions. The requirement of a common second-degree Casimir for the matter representa-

tions can be fulfilled by using a single irreducible representation –as is commonly done in

ordinary GUTs such as SO(10) and E6–, though our renormalisability result is valid for any

choice of representation– or combining a representation with its conjugate. Finally, once

the matter sector has been seen to be renormalisable, we show by using formal arguments

that there are no UV divergent contributions to the gauge sector which are of first order in

θ. We thus put forward, for the first time in the literature, a huge family of noncommutative

theories with chiral fermionic matter and GUT gauge groups which are one-loop renormal-

isable at first order in θ, in the physical sense that only the ordinary renormalisation of the

coupling constant and a new multiplicative renormalisation of the noncommutative matrix

parameter θµν are needed to workout UV finite S-matrix elements: the counterterms –in

particular, the a priori problematic θ-dependent counterterms– which are not given by the

renormalisations of θ and the coupling constant vanish on-shell. Recall that the free pa-

– 2 –
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rameters of our classical noncommutative field theories are the coupling constant and θµν .

Now, to make sure that the Hamiltonian formulation of our theories is the elementary

one –only one canonical momenta per generalised coordinate–, we shall choose a noncommu-

tative matrix parameter θµν such that θ0i = 0, i = 1, 2, 3. Hence, without lose of generality

one can say that θµν is characterized by a single noncommutative parameter, say, θ.

The paper is organised as follows. The theory is defined in section 2, where the com-

putation by means of the background field method is also outlined. Section 3 includes the

results of the computations of the UV divergent part of the effective action involving two

fermion fields, whose renormalisability is discussed in section 4. Section 5 is dedicated to

argue in favour of the renormalisability of the gauge sector. Conclusions are presented

in section 6. We also include two appendices: appendix A provides the results for the

divergent contributions to the Feynman diagrams involved in the computations of section

3, while appendix B gives the results for the beta functions of the physical parameters of

the theory, g and θ.

2 The theory and their background field method quantisation

We shall consider a general four-dimensional noncommutative GUT inspired theory with

an arbitrary anomaly safe [2] compact simple gauge group and no scalar fields as formulated

in ref. [4]. We thus define the theory by means of a noncommutative left-handed chiral

multiplet Ψ in an arbitrary representation ρΨ of the gauge group, and an enveloping-algebra

valued gauge field Aµ with action

S =

∫

d4x −
1

2g2
TrFµν ⋆ F

µν + Ψ̄Li /DΨL, (2.1)

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ]⋆, DµψL = ∂µΨL − iρΨ(Aµ) ⋆ΨL,

where, at first order in θ, the noncommutative fields are defined in terms of the ordinary

ones aµ, ψ by the following standard Seiberg-Witten maps,

Aµ = aµ +
1

4
θαβ{∂αaµ + fαµ, aβ} +O(θ2),

ΨL = ψL −
1

2
θαβρψ(aα)∂βψL +

i

4
θαβρψ(aα)ρψ(aβ)ψL +O(θ2). (2.2)

Note that ρψ denotes an arbitrary unitary representation, which can be expressed as a

direct sum of irreducible representations, ρψ =
⊕F

r=1 ρ
r
ψ. Accordingly, the fermion fields

can be expressed as a direct sum of irreducible multiplets, ΨL =
⊕F

r=1 Ψr
L, ψL =

⊕F
r=1 ψ

r
L.

Upon substituting eq. (2.2) in eq. (2.1) and, then, expanding up to first order in θ,

one obtains a classical action for the ordinary fields aaµ and ψL. Within the enveloping-

algebra formalism, the quantisation of the theory defined by this classical action defines

the corresponding noncommutative field theory at first order in θ. It has been shown in

ref. [4] that for compact simple gauge groups the anomaly cancellation condition [2] makes

the first order in θ contribution coming from the noncommutative Yang-Mills action in

eq. (2.1) vanish. So for the family of theories studied in this paper, and at first order in θ,

– 3 –
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the only classical noncommutative corrections to the ordinary classical action come from

the fermionic action in eq. (2.1).

Since we shall formulate the Feynman rules of our theory in terms of ordinary Dirac

fermions, we include in it a spectator right-handed fermion, as done in ref. [15]

S → S′ = S +

∫

d4x ¯̃ψRi/∂ψ̃R, ψ =

[

ψ̃R
ψL

]

.

Again as in ref. [15], we shall regularise the theory by means of dimensional regulari-

sation in D = 4 + 2ǫ dimensions, using the BMHV scheme for defining γ5 [16, 17]. In this

scheme there is an infinity of dimensionally regularised actions which reduce to (2.1) in the

limit D = 4, and which differ from one another by evanescent operators [18]. Following [18]

we will keep all the vector indices in interaction vertices “four-dimensional”, i.e., contracted

with the “barred” metric ḡµν ; we shall also define the dimensionally regularised θµν as being

“four-dimensional”. Furthermore, in our computations we shall discard any contribution

which has a pole in ǫ but whose numerator is an evanescent operator. Since we shall be deal-

ing with an anomaly free theory, these contributions involving evanescent operators have

no physical effects at the one-loop level [18, 19]–although they are needed at two loops and

beyond [20] — and are mere artifacts of the regularisation procedure. It is not difficult to

convince onself that the famous one-loop log (−Q2/µ2) contributions to Green functions are

uniquely fixed by the pole contributions to the effective action with no evanescent operators.

Our aim is to compute the one-loop UV divergent part of the effective action involving

two fermion fields and no evanescent operator in a manifestly covariant approach, which

allows to reconstruct the full contribution to the effective action from a minimum number

of diagrams, as was done in ref. [12]. For this we use the background field method [21]. This

method amounts to split the gauge field aµ in a background part bµ and a quantum part qµ,

aµ = bµ + qµ, (2.3)

and choose a gauge fixing which preserves background gauge transformations

δqµ = −i[qµ, c], δbµ = D[b]µc, D[b]µ = ∂µ − i[bµ, ].

This gauge fixing is

Sgf = −
1

2α

∫

d4x (D[b]µq
µ)2, Sgh =

∫

d4x c̄D[b]µD[b+ q]µc.

Adapting to our case the discussions in refs. [21] and [12], introducing the classical fields

b̂µ, ψ̂, the 1PI functional is given by

Γ[b̂µ, ψ̂,
ˆ̄ψ] =

∫

d4x
∑

k

∑

n

−i

(k!)2
Γ̃

(n,k)

i1, .., ik ; j1, .., jk ;
µ1, .., µn
a1, .., ak

k
∏

l=1

ˆ̄ψil

k
∏

p=1

ψ̂jp

n
∏

m=1

b̂am
µm
. (2.4)

The previous effective action is gauge invariant under gauge transformations of the classical

fields b̂µ, ψ̂,
ˆ̄ψ. The dimensionally regularised version of the effective action above is not

– 4 –
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p

µ, a ν, b ↔
−ig2δabηµν

p2 + iǫ

p
is jt

a,

↔
i(/p)ijδst

p2 + iǫ

µ, a

ν, b

ρ, c

k1

k2

k3

↔
1

g2
fabc[ḡµρ(k̄1 − k̄3 − k̄2)

ν + ḡνρ(k̄3 − k̄2)
µ

+ ḡµν(k̄2 − k̄1 + k̄3)
ρ]

p

µ, a

is jt

q

k

↔ i(γ̄µ)ij(T
a)st

b

p

µ, a

is jt

q

k

↔
1

2
(γ̄νPL)ijθ

αβρψ(T a)st[−(q̄ν p̄β − q̄β p̄ν)δ̄
µ
α) − k̄αp̄β δ̄

µ
ν ]

p

µ, a

ν, b

is

jt

q
k1

k2
↔−

1

4
(γ̄σPL)ijθ

αβ{ρψ(T a), ρψ(T b)}st(−(k̄1 − k̄2)σ δ̄
µ
αδ̄

ν
β

+ 2k̄1αδ̄
µ
σ δ̄

ν
β + 2k̄2αδ̄

ν
σ δ̄
µ
β − (q̄ − p̄)β(δ̄

µ
αδ̄

ν
σ + δ̄ναδ̄

µ
σ))

+ [ρL(T i)(a), ρL(T j)(b)]st((q̄+p̄)σ δ̄
µ
αδ̄

ν
β−(q̄+p̄)β(δ̄

µ
αδ̄

ν
σ−δ̄

ν
αδ̄

µ
σ))].

Figure 1. Feynman rules of the noncommutative interactions relevant to our calculations, involving

the Dirac fermion ψ.

strictly speaking gauge invariant, i.e, it is gauge invariant modulo an evanescent operator

which as we have argued above can be dropped for anomaly- free theories in UV divergent

one-loop computations.

Let us notice that Γ̃(n,k) is equivalent to a background 1PI diagram with n background

gauge field legs, k fermionic legs and k anti-fermionic legs. (Note that our definitions do

not involve any symmetrisation over the background gauge fields). The vertices relevant

to our calculations and their associated Feynman rules for α = 1 are given in figure 1. In

the Feynman rules, the background field legs are denoted with an encircled “b”; the rules

are defined without symmetrising over background field legs, in accordance with eq. (2.4).

– 5 –
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3 Computation of the UV divergent part of the effective action involving

two fermion fields

In this section we shall compute the UV divergent contributions (not involving evanescent

operators) to the effective action involving two fermion fields, at one-loop and first order in

θ, by calculating the background field 1PI diagrams Γ̃(n,k) with no external quantum field

legs of eq. (2.4), using the Feynman rules in figure 1.

To ease the computation we consider the following simplifications, which do not mean

a loss of generality of the results:

• Choice of gauge α = 1. This choice greatly simplifies the gauge propagator and since

the on-shell effective action is independent of the gauge-fixing term –see [22] and

references therein–, the conclusions we shall draw from our explicit computations

upon taking them on-shell will also be gauge independent.

• Computing a minimum number of diagrams. Since the use of the background field

method ensures gauge invariance (modulo one-loop irrelevant evanescent operators)

of the result for an anomaly free theory, the full gauge invariant contribution to the

UV divergent part with no evanescent operator of the effective action –which is local

in the fields– can be reconstructed from a reduced number of 1PI diagrams Γ̃(n,k).

These UV divergent contributions to the effective action can be expanded in a basis

of independent gauge invariant terms. If their contributions with a given number

and types of fields are also independent, then the coefficients in the expansion can

be fixed by computing the 1PI diagrams with the same number and types of fields.

In order to identify the diagrams that must be computed, we should start by choosing

a basis in 4 dimensions of gauge invariant terms whose integrals are independent. Since

it was shown in ref. [15] that noncommutative GUT inspired theories such as the ones

under consideration have no four fermion divergences, a little power-counting takes us to

the conclusion that we only need to consider terms with two fermion fields. We choose the

following ones, for each flavour r:

sr1 =θαβψ̄rγ
µPLfµβDαψr, sr2 =θαβψ̄rγ

µPLfαβDµψr, sr3 =θαβψ̄rγ
µPLDµfαβψr,

sr4 =θαβψ̄rγαPLfβµD
µψr, sr5 =θαβψ̄rγαPLD

µfβµψr, sr6 =θαβψ̄rγαβ
µPLD

νfµνψr,

sr7 =θαβψ̄rγαβ
µPLfµνD

νψr, sr8 =θαβψ̄rγα
ρσPLDβfρσψr, sr9 =θαβψ̄rγα

ρσPLfρσDβψr,

sr10 =θαβψ̄rγα
ρσPLfβσDρψr, sr11 =θαβψ̄rγαDβD

2ψr, sr12 =θαβψ̄rγαβ
µDµD

2ψr.

(3.1)

In the formulae above, fµν and Dαfµν are shorthands for ρr(fµν) and ρr(Dαfµν). We will

omit explicit indications of the representations ρr in future formulae; it will be assumed that

a Lie-algebra valued field or generator acting on a fermion ψr does so in the representation

ρr. Note that there are other admissible gauge invariant terms, involving symmetric in-

variant tensors ta1...ak of the gauge group, such as θαβψ̄rγ
µta1...akT a1r . . . T

ak−1

r (fαβ)
akDµψr;

however, these terms, as will be justified in the next paragraph from the Feynman rules

and the inspection of Feynman diagrams, do not appear in the UV divergent part of the

– 6 –
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A1 A2 A3

Figure 2. Diagrams contributing to Γ̃(0,1) at order h.

effective action at first order in θ, and may be ignored (also, recall that we are dealing with

anomaly safe theories with tabc = dabc = 0).

First, let us show that the gauge invariant contributions to the non-evanescent, diver-

gent part of the effective action involving two fermion fields at first order in θ, Γdiv,θ
ψ̄ψ

, can be

fixed by only considering Green functions with two fermionic legs and with two fermionic

legs and a bosonic leg, respectively. Schematically, the gauge invariant terms that may

contribute are of the form θψ̄D3ψ –whose contributions will appear in Green functions

with two fermion fields and between zero and three gauge fields– and θψ̄(Df)ψ, θψ̄fDψ,

which will involve contributions to Green functions with two fermion fields and between

one and three gauge fields. Given a basis of local gauge invariant terms such that their

contributions with a minimum number of fields are independent of each other, then the

coefficients of the expansion of Γdiv,θ

ψ̄ψ
in such basis can be fixed by computing the diver-

gences of the Green functions with the least possible number of fields. This means that for

our purposes it suffices to compute the pole part of the Green functions with two fermion

fields and two fermion fields and one gauge field, respectively. The diagrams are shown in

figures 2 and 3. Using the Feynman rules of figure 1, it is easily seen that the diagrams

of figure 2 have a colour structure of the form T ar T
a
r = C2(r)I –C2(r) being the second

Casimir invariant of the representation r. Their contribution to Γdiv,θ
ψ̄ψ

is −iΓ̃
(0,1)div
ij

ˆ̄ψiψ̂j
(see eq. (2.4)) and given their colour structure it is clear that they fix the coefficients of

the terms s11, s12 in the expansion of Γdiv,θ
ψ̄ψ

in the basis of eq. (3.1). Next, the diagrams

of figure 3 have colour structures of the form fabcT brT
c
r = i

2C2(G)T a, T ar T
b
rT

b
r = C2(r)T

a
r ,

where C2(G) is the second Casimir in the adjoint representation. These colour structures

involve only the generators T ar , and therefore it will be possible to express the contribution

−iΓ̃
(1,1)div
ij(µ,a)

ˆ̄ψiψ̂j b̂
a
µ to Γdiv,θ

ψ̄ψ
in terms of the three-field contributions of the terms s1-s12 of

eq. (3.1); there is no need to consider more complicated colour structures in the basis of

gauge invariant terms. Once the terms coming from s11, s12 –which, as explained before,

are identified from the diagrams of figure 2– are subtracted, one can fix the coefficients of

the terms s1-s10 in the expansion of Γdiv,θ
ψ̄ψ

in the basis of eq. (3.1).

The results for the UV divergent contributions of the diagrams of figures 2 and 3 are

shown in appendix A. The final result for the gauge invariant O(θ) contributions to the

divergent part of the one-loop effective action is the following,

Γdiv,θ
ψ̄ψ

[bµ, ψ] =

∫

dDx

{

g2

192π2ǫ
θαβ

∑

r

C2(r) ψ̄rγαβρPLD
ρD2ψr +

ig2

16π2ǫ

∑

r

C2(G)

– 7 –



J
H
E
P
1
2
(
2
0
0
9
)
0
4
2

B1 B2 B3 B4 B5

B6 B7 B8 B9

Figure 3. Diagrams contributing to Γ̃(1,1) at order h.

×

[

1

6
θαβψ̄rγ

µPLfµβDαψr −
1

3
θαβψ̄rγ

µPLfαβDµψr

−
1

8
θαβψ̄rγ

µPLDµfαβψr +
5

6
θαβψ̄rγαPLfβµD

µψr

+
5

12
θαβψ̄rγαPLD

µfβµψr −
1

8
θαβψ̄rγα

ρσPLDβfρσψr −
1

16
θαβψ̄rγαβ

µPLD
νfµνψr

]

+
ig2

16π2ǫ

∑

r

C2(r)

[

1

2
θαβψ̄rγ

µPLfµβDαψr +
1

8
θαβψ̄rγ

µPLDµfαβψr −
3

2
θαβψ̄rγαPLfβµD

µψr

−
3

4
θαβψ̄rγαPLD

µfβµψr +
1

24
θαβψ̄rγα

ρσPLDβfρσψr +
1

6
θαβψ̄rγαβ

µPLD
νfµνψr

+
1

12
θαβψ̄rγαβ

µPLfµνD
νψr

]}

, (3.2)

where all covariant derivatives and field strengths are evaluated on the background field bµ,

and we have suppressed the hats on the classical fields as well as explicit indications of the

representations ρr of the field strength and its covariant derivatives to ease the notation.

In the formulae above, C2(r) represents the second Casimir of the representation r, C2(G)

corresponding to the adjoint representation. It is defined as T ar T
a
r = C2(r)Ir. In terms of

– 8 –
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the basis si of eq. (3.1)

Γdiv,θ
ψ̄ψ

[bµ, ψ] =

∫

d4x

(

g2i

16π2ǫ

∑

r

C2(G)

[

1

6
sr1 −

1

3
sr2 −

1

8
sr3 +

5

6
sr4 +

5

12
sr5 −

1

16
sr6 −

1

8
sr8

]

+
g2i

16π2ǫ

∑

r

C2(r)

[

1

2
sr1 +

1

8
sr3 −

3

2
sr4 −

3

4
sr5 +

1

6
sr6 +

1

12
sr7 +

1

24
sr8 −

i

12
sr12

])

. (3.3)

4 Analysing renormalisability of the matter sector

The objective of this section is to check whether the noncommutative divergences involving

two fermion fields of eq. (3.2) can be subtracted by means of multiplicative renormalisation

of the coupling constant, the noncommutative parameter θ and fields plus counterterms

which vanish on-shell.

First, the the one-loop divergences at order zero in θ are, as is well known, renor-

malisable by means of multiplicative renormalisations of fields and parameters. These

multiplicative renormalisations take the form

bµ = Z
1/2
b bRµ , ψ = Z

1/2
ψ ψR, g = µ−ǫ Zgg

R, , θµν = Zθθ
R
µν , (4.1)

with Zi = 1 + δZi. The parameter µ is the dimensional regularisation scale. Note that

in the background field method there is no need to renormalise the quantum field q of

eq. (2.3). It is easily seen that gauge invariance forces δZb = 0, while the divergences in

the ordinary theory yield

δZrψ =
g2C2(r)

16π2ǫ
, (4.2)

δZg =
g2

16π2ǫ

[

11

6
C2(G) −

2

3

∑

r

c2(r)

]

,

where c2(r) is the index of the representation r; its relation with C2(r) is given in eq. (B.2).

Let us introduce the following type of counterterms

Sct =

∫

dDx
δS

δaaµ(x)
F aµ [a, ψ] +

(

∑

r

δS

δψr(x)
Gr[a, ψ] + c.c.

)

, (4.3)

which vanish on-shell due to the equations of motion

δS

δaaµ(x)
=

δS

δψr(x)
= 0.

In order to preserve gauge symmetry, F a[a, ψ] and Gr[a, ψ] have to transform in 4 dimen-

sions under gauge transformations as follows

sFµ = −i[Fµ, λ], sGr = iλGr.

We consider the following Fµ and Gr,L

Fµ =y1θ
αβDµfαβ + y2θµ

αDνfνα +
∑

r

yr3θµ
α(ψ̄rγαPLT

aψr)T
a

+ i
∑

r

yr4θ
αβ(ψ̄rγµαβPLT

aψr)T
a + y5θ̃

β
µ Dνfνβ,
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Gr,L =kr1θ
αβfαβPLψr + k2

rθ
αβγαµPLfβ

µψr + kr3θ
αβγαµPLDβD

µψr + kr4θ
αβγαβPLD

2ψr

+ kr5θ̃
αβγ5PLfαβψr; yi ∈ R, ki ∈ C, (4.4)

which have the appropriate behaviour under gauge transformations. Note that we only

considered a left-handed part for Gr, since all the divergences in eq. (3.2) involve left-

handed projectors PL.

The O(θ) counterterm action involving two fermion fields obtained by considering the

multiplicative renormalisations of eq. (4.1) and the tree-level contributions of the countert-

erms Sct vanishing on-shell, has the following expansion in the basis of terms si:

Sct,θ
ψ̄ψ

= ih

∫

dDx
∑

r,i

Cri s
r
i , (4.5)

Cr1 =
1

2
(δZθ + δZψ) − (kr2)

∗ − kr2, Cr2 = −
1

4
(δZθ + δZψ) + (kr1)

∗ + kr1 +
i

2
(kr3)

∗ −
i

2
kr3,

Cr3 = −iy1 + kr1 −
1

2
kr2 +

i

2
(kr3)

∗, Cr4 = −(kr2)
∗ − kr2 − i(kr3)

∗ − ikr3 − 4i(kr4)
∗,

Cr5 = iy2 −
i

2g2
yr3 − 2i(kr4)

∗ − kr2, Cr6 = −
1

2g2
yr4 −

1

2
y5 − i(kr4)

∗ − ikr5,

Cr7 = −2i(kr4)
∗ − i(kr5)

∗ − ikr5, Cr8 = −
1

2
kr2 +

i

2
(kr3)

∗ +
i

2
kr3 − ikr5,

Cr9 =
i

2
(kr3)

∗ +
i

2
kr3 − ikr5 − i(kr5)

∗, Cr10 = (kr2)
∗ − kr2 + i(kr3)

∗ + ikr3,

Cr11 = −(kr3)
∗ − kr3 − 2(kr4)

∗ − 2kr4, Cr12 = −(kr4)
∗ + kr4.

The yi, ki of eq. (4.4) also generate, to O(θ) and at tree-level, terms involving four fermion

fields,

Sct,θ
ψ̄ψψ̄ψ

=

∫

d4x
∑

r,s

(ys3θ
αβ+2ys4θ̃

αβ)(ψ̄rγαT
aPLψr)(ψ̄sγβT

aPLψs), θ̃
αβ =

1

2
ǫαβµνθµν . (4.6)

As seen in ref. [15], four-fermion divergences are absent in noncommutative GUT compati-

ble theories at one loop, O(θ). Renormalisability of the divergences involving two and four

fermions amounts to demand

Sct,θ

ψ̄ψψ̄ψ
= 0, Sct,θ

ψ̄ψ
= −Γdiv,θ

ψ̄ψ
.

where Sct,θ
ψ̄ψψ̄ψ

, Sct,θ
ψ̄ψ

and Γdiv,θ
ψ̄ψ

are given, respectively, by eqs. (4.6), (4.5) and (3.3) The first

equation is solved by choosing yr3, y
r
4 to be flavour independent (yri = yi ∀ r). Solving the

second identity in the basis of independent terms sri and projecting the resulting equations

into their real and imaginary parts, one gets

sr1 :
1

2
(δZθ + δZψ) − 2Rekr2 =−

g2

16π2ǫ

(

1

6
C2(G) +

1

2
C2(r)

)

,

sr2 : −
1

4
(δZθ + δZψ) + 2Rekr1 + Imkr3 =

g2C2(G)

48π2ǫ
,

sr3 : y1 −
1

2
Rekr3 − Imkr1 +

1

2
Imkr2 =0,

1

2
Imkr3 + Rekr1 −

1

2
Rekr2 =

g2(C2(G) − C2(r))

128π2ǫ
,
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sr4 : Rekr3 + 2Rekr4 =0, −2Rekr2 − 4Imkr4 =−
g2

16π2ǫ

(

5

6
C2(G) −

3

2
C2(r)

)

,

sr5 :
1

2g2
yr3 − y2 + 2Rekr4 + Imkr2 =0, −Rekr2 − 2Imkr4 =−

g2

16π2ǫ

(

5

12
C2(G) −

3

4
C2(r)

)

,

sr6 : Rekr4 + Rekr5 =0, −
1

2g2
yr4 −

1

2
y5 − Imkr4 + Imkr5 =−

g2

16π2ǫ

(

−
1

16
C2(G) +

1

6
C2(r)

)

,

sr7 : Rekr4 + Rekr5 =0, −2Imkr4 =−
g2C2(r)

192π2ǫ
,

sr8 : − Rekr3 + Rekr5 +
1

2
Imkr2 =0, Imkr5 −

1

2
Rekr2 =−

g2

16π2ǫ

(

−
1

8
C2(G) +

1

24
C2(r)

)

,

sr9 : − Rekr3 + 2Rekr5 =0,

sr10 : Imkr2 − Rekr3 =0,

sr11 : − Rekr3 − 2Rekr4 =0,

sr12 : − 2Imkr4 =−
g2C2(r)

192πsǫ
.

The equations are compatible, and we find the following family of solutions

y1 = Imkr1, yr3 = 2g2y2,

yr4 = −y5g
2 −

g4

384π2
(16C2(r) − 13C2(G)), Zθ = −Zψ −

g2

48π2ǫ
(13C2(r)−4C2(G)),

Rekr1 = −
1

2
Imkr3−

g2

384π2ǫ
(13C2(r)−8C2(G)), Imkr5 = −

g2

384π2ǫ
(11C2(r) − 8C2(G)),

Imkr4 =
g2C2(r)

384π2ǫ
, Rekr2 = −

5g2

192π2ǫ
(2C2(r) − C2(G)),

Imkr2 = Rekr3 = 2Rekr5 = −2Rekr4. (4.7)

First, note that y1, y2, y5 and δZθ must be flavour independent (see eq. (4.4)), and so must

be y3, y4 for the cancellation of the four fermion divergences to be preserved under the

renormalisation procedure, as was previously seen. Looking at the solutions in eq. (4.7)

and imposing flavour independence, it is clear that one must require that all flavours have

identical C2(r); this can be achieved by considering all fields in the same representation or

also in its conjugate.

Since the counterterms of eqs. (4.3) and (4.4), which are dependent on the parameters

yi, and ki, vanish on-shell, we have that the corresponding divergences in the effective

action are physically irrelevant since they will cancel out when computing the S matrix.

Looking at the expansion in the counterterm action of eq. (4.5), it is clear that the only

divergences surviving on-shell are those associated with the multiplicative renormalisation

of the gauge coupling constant and noncommutativity parameter θ.

5 No O(θ) UV divergent contributions in the gauge sector

The results of the previous section, together with those of ref. [15], show that the matter

sector of the one-loop, order θ effective action is renormalisable. It remains to see if the
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gauge sector is also renormalisable. In all cases analysed in the literature so far, the gauge

sector of noncommutative gauge theories in the enveloping algebra approach turned out

to be one-loop renormalisable at order θ. We show in this section that, at one-loop, there

are no UV divergent contributions of first order in θ to the part of the background-field

effective action, Γ[b̂µ, ψ̂ = 0, ˆ̄ψ = 0] which only depends on the gauge field.

Possible UV divergences in the gauge sector can be of two types, depending on whether

they involve ǫ tensors or not. Since any vector-like contribution to the effective action can

always be regularised in a gauge-invariant way in the framework of dimensional regularisa-

tion, the allowed O(θ) vector-like UV divergences can only be a combination of the terms

Trθαβfαβfµνf
µν and Trθαβfαµfβνf

µν , which vanish for anomaly safe groups since they

involve vanishing symmetrised TrT a{T b, T c}. It only remains to show that there are no

UV divergences involving ǫ tensors. These divergences would come from fermionic loops,

since the ǫ tensors arise from traces of γ matrices. The one-loop fermionic contributions to

the gauge sector of the effective action can be computed in a clever way, to all orders in θ,

using the technique used in refs. [2] and [13]. By defining appropriately the dimensionally

regularised interactions –recall that there is an infinity of choices, differing by evanescent

contributions– a change of variables can be done in the fermionic path integral which

amounts to inverting the SW map and whose Jacobian is unity. The diagrams to compute

involve vertices with noncommutative fermions, in which the noncommutative phase fac-

tors are independent of the loop momenta. Then, as done in ref. [2], it can be easily seen

that these diagrams have vanishing UV divergent contributions involving ǫ tensors.

We have seen that there are no UV divergences contributions in the gauge sector at

one-loop and first order in θ. Now, since at tree-level there are no O(θ) contributions

only involving gauge fields, there is no conflict with the multiplicative renormalisations of

eq. (4.2), and thus the gauge sector is one-loop renormalisable up to first order in θ.

6 Summary, conclusions and outlook

In this paper we have computed the UV divergent contributions, involving two fermions and

an arbitrary number of gauge fields, to the background field effective action of noncommuta-

tive, anomaly safe GUT inspired theories with no scalars. We have done the computation

at one-loop and first order in the noncommutativity parameter θ. We have shown that

those UV divergences can be renormalised by means of the ordinary multiplicative renor-

malisations of the coupling constant and fields, along with a multiplicative renormalisation

of the noncommutative parameter θ and with the introduction of θ-dependent countert-

erms which vanish on-shell, provided the irreps furnished by the matter fermionic fields

share the same second-degree Casimir invariant. It is obvious that this condition on the

second-degree Casimir invariant is automatically fulfilled by the fermionic matter content

of the phenomenologically relevant ordinary SO(10) and E6 GUTs. We have also shown

that the gauge sector of these theories receives no linear one-loop UV divergent radiative

corrections which are of first order in θ.

Our results, together with those of ref. [15] proving the absence of 4 fermion UV

divergences in the one-loop effective action of noncommutative GUT inspired theories at

– 12 –
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first order in θ, show that the theories considered in this paper are renormalisable on-shell

at one-loop and first order in θ. We have thus seen that, at one-loop and first order in θ,

only the renormalisation of the coupling constant and the noncommutative parameter θ

–the two free physical parameters of the classical theory– are needed to obtain renormalised

S matrix elements. This is the first time in which a noncommutative gauge theory defined

by means of Seiberg-Witten map, with fermions in representations other than the adjoint,

has been shown to have this property. This result clearly favours the consideration of

GUT compatible noncommutative theories over their nonrenormalisable brethren. The only

other known examples of one-loop, O(θ) renormalisable noncommutative gauge theories

involve SU(N) adjoint Majorana fermions in a supersymmetric setting [12].

A pressing open problem is the study, at one-loop and first order in θ, of the renor-

malisability of the noncommutative GUT theories obtained by adding a noncommutative

Higgs and Yukawa sectors –through the hybrid Seiberg-Witten map of ref. [4]– to the non-

commutative theories considered here. The computations involved in this study are far

more lengthy that the already long calculations carried out in this paper and will certainly

deserve to be the content of a different paper. We hope that the results presented here will

encourage people to further analyse the properties of noncommutative GUT theories.
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A Divergent contributions to the diagrams of figures 2 and 3

Here we give the pole part of the Feynman diagrams depicted in figures 2 and 3, computed

in dimensional regularisation with D = 4 + 2ǫ dimensions.

A1 =0,

A2 =−
g2

96π2ǫ

⊕

r

C2(r)Irθ
αβγβPLp

2pα−
g2

384π2ǫ

⊕

r

C2(r)Irθ
αβγραβPLp

2pρ,

A3 =
g2

96π2ǫ

⊕

r

C2(r)Irθ
αβγβPLp

2pα−
g2

384π2ǫ

⊕

r

C2(r)Irθ
αβγραβPLp

2pρ,

B1 =0,

B2 =−
g2

8π2ǫ

⊕

r

C2(G)TAr (γµkαpβθ
αβ−/pkαθ

αµ+/kpαθ
µν)PL,

B3 =−
g2

8π2ǫ

⊕

r

C2(r)T
A
r

(

1

8
γµkαpβθ

αβ+
1

8
pµkαγβθ

αβ+
1

24
pµpαγβθ

αβ+
1

8
/kpαθ

αµ+
1

24
/ppαθ

αµ

−
1

8
k · pγβθ

µβ−
1

8
p2γβθ

µβ+
1

8
pρkαγρβ

µθαβ+
1

24
pρpαγρβ

µθαβ+
1

48
p2γµαβθ

αβ
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−
1

8
kρpσγρσβθ

µβ

)

PL

−
g2

32π2ǫ

⊕

r

C2(G)TAr

(

−
1

4
pµpαγβθ

αβ−
1

4
/ppαθ

αµ+
1

4
p2γβθ

µβ−
1

4
pρpαγρβ

µθαβ
)

PL,

B4 =−
g2

8π2ǫ

⊕

F

C2(F )TAF

(

1

8
γµkαpβθ

αβ−
1

6
kµkαγβθ

αβ+
1

6
pµkαγβθ

αβ−
1

6
/kkαθ

αµ+
1

24
/pkαθ

αµ

+
1

24
kµpαγβθ

αβ−
1

24
pµpαγβθ

αβ+
1

6
/kpαθ

αµ−
1

24
/ppαθ

αµ+
1

4
k2γβθ

µβ−
3

8
k · pγβθ

µβ

+
1

8
p2γβθ

µβ+
1

6
kρkαγρβ

µθαβ−
1

6
pρkαγρβ

µθαβ−
1

24
kρpαγρβ

µθαβ+
1

24
pρpαγρβ

µθαβ

+
1

48
k2γµαβθ

αβ−
1

24
k · pγµαβθ

αβ+
1

48
p2γµαβθ

αβ+
1

8
kρpσγρσβθ

µβ

)

PL

−
g2

32π2ǫ

⊕

F

C2(G)TAF

(

1

4
kµkαγβθ

αβ−
1

4
pµkαγβθ

αβ+
1

4
/kkαθ

αµ−
1

4
/pkαθ

αµ

−
1

4
kµpαγβθ

αβ+
1

4
pµpαγβθ

αβ−
1

4
/kpαθ

αµ+
1

4
/ppαθ

αµ−
1

4
k2γβθ

µβ+
1

2
k · pγβθ

µβ

−
1

4
p2γβθ

µβ−
1

4
kρkαγρβ

µθαβ+
1

4
pρkαγρβ

µθαβ+
1

4
kρpαγρβ

µθαβ−
1

4
pρpαγρβ

µθαβ
)

PL,

B5 =
g2

32π2ǫ

⊕

r

C2(G)TAr

(

5

6
γµkαpβθ

αβ−
1

6
kµkαγβθ

αβ+
1

6
pµkαγβθ

αβ−
1

3
/kkαθ

αµ−
1

3
/pkαθ

αµ

−
1

6
kµpαγβθ

αβ+
1

6
pµpαγβθ

αβ+
5

6
/kpαθ

αµ−
1

6
/ppαθ

αµ+
1

3
k2γβθ

µβ−
1

2
k · pγβθ

µβ

+
1

6
p2γβθ

µβ−
1

3
kρkαγρβ

µθαβ−
1

6
pρkαγρβ

µθαβ+
2

3
kρpαγρβ

µθαβ−
1

6
pρpαγρβ

µθαβ

−
1

24
kµkργραβθ

αβ+
1

12
pµkργραβθ

αβ+
1

24
kµpργραβθ

αβ−
1

12
pµpργραβθ

αβ

+
1

6
kρpσγρσβθ

µβ

)

PL,

B6 =
g2

32π2ǫ

⊕

r

C2(G)TAr

(

5

6
γµkαpβθ

αβ+
1

3
pµkαγβθ

αβ−
1

2
/pkαθ

αµ−
1

6
pµpαγβθ

αβ+
2

3
/kpαθ

αµ

+
1

6
/ppαθ

αµ−
1

6
k · pγβθ

µβ−
1

6
p2γβθ

µβ+
1

3
pρkαγρβ

µθαβ−
1

2
kρpαγ

µ
ρβθ

αβ−
1

6
pρpαγρβ

µθαβ

+
1

24
kµpργραβθ

αβ−
1

12
pµpργραβθ

αβ−
1

6
kρpσγρσβθ

µβ

)

PL,

B7 =−
g2

16π2ǫ

⊕

r

(

C2(r)−
1

2
C2(G)

)

TAr

(

−
1

3
γµkαpβθ

αβ−
1

12
kµkαγβθ

αβ+
1

6
pµkαγβθ

αβ

+
1

4
/kkαθ

αµ−
1

6
/pkαθ

αµ−
1

3
/kpαθ

αµ+
1

12
k2γβθ

µβ−
1

6
k · pγβθ

µβ−
1

4
kρkαγρβ

µθαβ
)

PL,

B8 =−
g2

16π2ǫ

⊕

F

(

C2(F )−
1

2
C2(G)

)

TAF

(

1

6
γµkαpβθ

αβ−
1

3
kµkαγβθ

αβ+
7

12
pµkαγβθ

αβ

−
1

6
/kkαθ

αµ+
1

12
/pkαθ

αµ+
1

6
kµpαγβθ

αβ−
5

12
pµpαγβθ

αβ+
1

6
/kpαθ

αµ−
1

12
/ppαθ

αµ
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+
1

6
k2γβθ

µβ−
1

4
k · pγβθ

µβ+
1

12
p2γβθ

µβ−
1

6
kρkαγρβ

µθαβ−
1

12
pρkαγρβ

µθαβ

+
1

3
kρpαγρβ

µθαβ−
1

12
pρpαγρβ

µθαβ−
1

12
kµkργραβθ

αβ+
1

24
pµkργραβθ

αβ−
1

24
kµpργραβθ

αβ

+
1

12
pµpργραβθ

αβ+
1

8
k2γαβ

µθαβ−
1

8
k · pγαβ

µθαβ+
1

12
kρpσγρσβθ

µβ

)

PL,

B9 =−
g2

16π2ǫ

⊕

F

(

C2(F )−
1

2
C2(G)

)

TAF

(

1

6
γµkαpβθ

αβ+
1

6
pµkαγβθ

αβ−
1

4
kµpαγβθ

αβ

+
5

12
pµpαγβθ

αβ+
1

12
/kpαθ

αµ+
1

12
/ppαθ

αµ−
1

12
k · pγβθ

µβ−
1

12
p2γβθ

µβ+
1

6
pρkαγρβ

µθαβ

−
1

4
kρpαγρβ

µθαβ−
1

12
pρpαγρβ

µθαβ−
1

8
pµkργραβθ

αβ−
1

24
kµpργραβθ

αβ+
1

12
pµpργραβθ

αβ

+
1

8
k · pγαβ

µθαβ −
1

12
kρpσγρσβθ

µβ

)

PL,

In the formulae above, Ir denotes the identity operator in the linear space defined by the

representation r.

B Beta functions of the physical couplings g and θ

It is an elementary exercise to work out the one-loop beta functions, βg and βθ, of g and

θ, respectively, which are the only physical couplings of the theory. One gets the following

results

βg = −
g3

16π2

(

11

3
c2(G) −

4

3

∑

r

c2(r)

)

,

βθ = −
g2θ

6π2
(C2(G) − 4C2(r)). (B.1)

C2(r) represents the second-degree Casimir invariant of the representation r, while c2(r) is

the index of the representation. Both are related by the relation

C2(r) = c2(r)
N(G)

N(r)
, (B.2)

N(r) being the dimension of the representation r, and G denoting the adjoint representa-

tion. The β function for the gauge coupling g is the same as in the commutative theory.

The β function for θ, due to the presence of matter, has generically the opposite sign as

that of the beta function for the noncommutative parameter that was computed for non-

commutative pure gauge theories in ref. [9]. βθ in eq. (B.1) can be seen to be positive for

E6 and SO(10) representations with dimensions less than 100000 and 12000, respectively,

using the data in ref. [23].
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[4] P. Aschieri, B. Jurčo, P. Schupp and J. Wess, Non-commutative GUTs, standard model and

C, P, T, Nucl. Phys. B 651 (2003) 45 [hep-th/0205214] [SPIRES].

[5] R. Wulkenhaar, Non-renormalizability of θ-expanded noncommutative QED,

JHEP 03 (2002) 024 [hep-th/0112248] [SPIRES].
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